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Abstract:  This paper presents the concept and applications 
of secondary voltage-var controls applied to Static 
Compensators (STATCOMs) for fast voltage control and 
long term var management.  The main purpose of the 
secondary controls is to ensure that an adequate range of the 
STATCOM dynamic capability is available for major system 
disturbances.  The output of the secondary controls 
presented here call for the switching of capacitor banks to 
“reset” the reactive power output of the STATCOM to a pre-
specified level after a system event or during the course of a 
daily load cycle, or for fast voltage control.  Two recent 
applications of STATCOMs coordinated with local and 
remote capacitor banks for the purpose of fast voltage 
control and long term var management are presented.  
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1.  INTRODUCTION 
 
Static Compensators (STATCOMs) apply advanced power 
electronic devices such as GTOs (Gate Turn Off Thyristors) 
or GCTs (Gate Commutated Thyristors) and are able to 
exchange reactive current (inject or absorb) with the power 
system at a range of voltage levels, similar to a synchronous 
condenser.  Thus, STATCOMs are able to provide voltage 
support to the power system in the vicinity of the bus to 
which it is connected.  The reactive current injection 
capability of STATCOMs is illustrated in Figure 1. 
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Figure 1.  Reactive current capability of a STATCOM. 

STATCOMs has been successfully applied in a number of 
projects over the past decade [1, 2, 3, 4].  In addition to these 
referenced and other applications, there are several other 
recently completed STATCOMs in the U.S., in the states of 
Vermont [5, 6] and Texas, and an on-going project in 
California.   
 
Feedback controls in a STATCOM can mitigate voltage 
instability and improve system transient stability.  Auxiliary 
controls, such as for power swing damping, can also be 
implemented in a STATCOM to help system oscillatory 
stability. Furthermore, secondary controls are often 
implemented in STATCOM installations to coordinate local 
and remote capacitor banks for fast voltage control and long 
term var management.  The secondary control functions are 
the main focus of this paper. 
 

2.  PRIMARY CONTROLS FOR STATCOMS 
 
The primary control objective of a STATCOM is to support 
the bus voltage to which it is connected by injecting or 
absorbing reactive current.  This is accomplished by a 
regulator using bus-measurement feedback, typically bus 
voltage.  The typical step-response time of the STATCOM 
for this primary function of voltage control is on the order of 
50 msec.   
 
Figure 2 is an example of the primary control of 
STATCOMs applied by Mitsubishi Electric at two recent 
projects, namely by Vermont Electric (VELCO) at the Essex 
115 kV substation [5, 6] and by San Diego Gas & Electric 
(SDG&E) at the Talega 138 kV substation.  The figure 
illustrates that the Mitsubishi Electric primary control has 
two main portions, namely, an automatic voltage regulator 
(AVR) with bus-voltage feedback, and an automatic reactive 
power regulator (AQR) with a STATCOM-reactive-power-
output feedback, along with associated limiters. 
 
Figure 2 shows that the AVR also has an available input for 
an auxiliary voltage signal, such as for a power swing 
damping control.  Also shown in this figure is an auxiliary 
input for the AQR, which can be used for a coordination 
function for local and remote capacitor banks for fast voltage 
control and long term var management, as discussed in the 
next section.  
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Figure 2.  Functional block diagram of the primary control the Mitsubishi Electric STATCOMs. 

 
3.  SECONDARY CONTROLS FOR STATCOMS 

 
The main purpose of secondary controls applied to a 
STATCOM is to ensure that it maintains an adequate range 
of dynamic capability for major system disturbances.  The 
output of the secondary controls calls for the switching of 
capacitor banks to “reset” the reactive power output of the 
STATCOM to a pre-specified level after a system event 
(long term), or during the course of a daily load cycle (long 
term), or during an event for voltage control (fast).  The 
concept of the primary and secondary control is illustrated in 
Figure 3. 
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Figure 3.  Functional diagram of the primary and secondary 

control of a STATCOM. 
 

Reference [7], also by this author, discusses the concept of 
coordinating a STATCOM with local voltage-var control 
devices such as load-tap changers (LTCs) and capacitor 
banks, for long term voltage-var management.  Reference 
[7] introduced the concepts of long term voltage-var 
management for any one of the following three objectives:  

 
• Resetting a STATCOM by a simple reactive power 

runback function so that it would be available for the 
“next” dynamic event on the system. 

• Improving the overall system voltage profile by 
coordinating the STATCOM with local LTCs and/or 
capacitor banks. 

• Reducing LTC tap movements by coordinating the 
STATCOM with local LTCs and/or capacitor banks. 

 
Reference [7] discusses the advantages and disadvantages of 
applying secondary controls to STATCOMS for each of the 
above-listed objectives.   
 
The remainder of this paper discusses two recent 
applications of STATCOMs by Mitsubishi Electric, namely 
by Vermont Electric (VELCO) at the Essex 115 kV 
substation and by San Diego Gas & Electric (SDG&E) at the 
Talega 138 kV substation, and the related application of 
secondary controls for fast voltage control and long term var 
management. 
 

4.  THE VELCO ESSEX STATCOM 
 
Description of the STATCOM System 
The STATCOM in the VELCO power system at the Essex 
115 kV substation was installed to provide compensation for 
heavy increases in summertime electric usage, which have 
rendered the existing system increasingly vulnerable to 
events on the VELCO system.  The requirements (i.e., the 
purpose of the STATCOM) can be categorized as dynamic 
reactive compensation needed for fast voltage support during 
critical contingencies.   
 
As shown in Figure 4, the STATCOM system consists of 
two groups of voltage-sourced converters (37.5 MVA each) 
and two sets of shunt capacitors (24.75 Mvar each).  Each 
37.5 MVA converter group consists of three sets of 12.5 
MVA modules plus a 5 Mvar harmonic filter, with a nominal 
phase-to-phase ac voltage of 3.2 kV and a DC link voltage 
of 6,000 V.  The two STATCOM groups are connected to 
the 115 kV system via two three-phase inverter transformers 
rated at 43 MVA, 3.2 kV/115 kV.  This STATCOM was put 
into service in May 2001. 
 
In addition to the primary control requirements described 
above, there were secondary power system control issues 
associated with this STATCOM application.  The secondary 
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control issues concerned both reserve capacity control and 
fast voltage control.  Therefore, the STATCOM control is 
coordinated with several local and remote capacitor banks to 
perform these secondary control functions.  The STATCOM 
control monitors and switches (in or out) seven other 
capacitor banks:  four local 24.75 Mvar banks at Essex, and 
three remote 24.75 Mvar banks at the Sandbar, Williston, 
and Georgia substations.  There are also provisions built into 
the controller for two future banks at Essex.  A one-line 
diagram of the VELCO 115 kV system in the vicinity of the 
Essex STATCOM is shown in Figure 5. 
 
The secondary control functions are illustrated in Figure 6 
and described in the following subsections.  
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Figure 4. VELCO Essex STATCOM system one-line diagram 
(CB=circuit breaker, D/S=disconnect switch). 

 
Fast Voltage Control 
As illustrated in Figure 6, the secondary control function for 
fast voltage control monitors the voltage error of the 
STATCOM from the primary control (AVR), and if the error 
exceeds a threshold for a specified time, then a connect (for 
low voltage conditions) or disconnect (for high voltage 
conditions) signal is given.  The panel of the STATCOM 
controller for the fast voltage control is shown in Figure 7.  
This figure shows that the available settings are for the 
voltage error (typically +/- 2%), a time for how long the 
voltage error must be exceeded (typically seconds), and a 
time interval before a subsequent switch signals can be given 
(typically tens of seconds or a few minutes).  There are 
separate timer settings for connect and disconnect control 
actions.   
 
Since the monitored voltage error is based on the Essex 
substation, to which the STATCOM is connected, this fast 
voltage control is primarily for severe system conditions 
when the STATCOM is pushed into its limits.  Thus an 
action of capacitor bank switching can move the STATCOM 
back into its controllable range. 

Reserve Capacity Control 
The reserve capacity control is designed to enable the 
operating point of the STATCOM inverters to be offset into 
the inductive region so that a desired “net capacitive range” 
or “reserve capacity” can be achieved.  Reserve capacity is 
defined as the available net change in STATCOM inverter 
output towards the capacitive region from a given operating 
point.  For example, if the STATCOM inverters are 
operating with zero net output, the reserve capacity will be 
equal to the maximum output rating of the inverters (75 
Mvar).  If the operating point is biased into the inductive 
region, for example to 24 Mvar or 48 Mvar inductive, then 
the reserve capacity will be 99 Mvar or 123 Mvar, 
respectively.  The reserve capacity of the VELCO 
STATCOM can be selected by the operator to one of three 
positions; high, medium, and low, which add inductive 
offsets of 48, 24 and 0 Mvar respectively to the operating 
setpoint of the STATCOM.  This is illustrated in Figure 6. 
 
The desired reserve capacity is a function of the system 
loading conditions with generally higher reserve capacity 
(i.e., more biasing into the inductive region) being required 
under heavy load conditions.  Under light load conditions 
the system requirements for reserve capacity are lower and it 
is advantageous to operate the STATCOM at the low or 
medium reserve capacity settings to reduce the losses.  The 
reserve capacity requirement is achieved by automatically 
connecting or disconnecting shunt capacitors at the Essex, 
Sandbar, Williston, and Georgia substations.   
 
The panel for the STATCOM controller for the reserve 
capacity control is shown in Figure 7.  The capacitor banks 
selection logic is discussed in the next subsection. 
 
Capacitor Bank Selection 
The STATCOM secondary controls (fast voltage control or 
the reserve capacity control) sends a signal when a capacitor 
bank switching event (connect or disconnect) is being 
requested.  The algorithm adopted for the VELCO 
STATCOM first switches all capacitor banks at Essex with 
the “first-on/last-off” logic.  For the remote capacitor banks 
at Williston, Sandbar, and Georgia, they are switched on or 
off based on their bus voltage (e.g., lowest voltage on first, 
highest voltage off first).  If a selected capacitor bank is 
already on-line at the specified substation or is disabled, the 
selection controller searches for the next one in the 
hierarchy.  The capacitor banks status panel of the 
STATCOM control is shown in Figure 8.  
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Figure 5.  One-line diagram of the VELCO 115 kV system in the vicinity of the Essex STATCOM.  The highlighted capacitor 

banks are coordinated with the STATCOM for fast voltage control and reserve capacity control. 
 

QSTATCOM

AVRVsystem
--

Vref

AQR+
+

Qref

Vinverter

Vauxiliary

+ +

Fast 
Voltage
ControlVdeadband

Typical = +/- 2%

Manual
Disable

Reserve 
Capacity
ControlQdeadband

Typical = +/- 12.5 Mvar

Manual
Disable

Q reserve capacity offset
48 Mvar (High)
24 Mvar (Medium)
0 Mvar (Low)

Auto
Disable

Connect/Disconnect  
Signals To Local 

and Remote 
Capacitor Banks

(7 total plus 2 future)

Capacitor 
Bank 

Selection

Capacitor Bank Status
Capacitor Bank Availability

Remote Capacitor Bank Bus Voltage
(7 total plus 2 future)

Connect

Disconnect

QSTATCOM

AVRVsystem
--

Vref

AQR+
+

Qref

Vinverter

Vauxiliary

+ +

Fast 
Voltage
ControlVdeadband

Typical = +/- 2%

Manual
Disable

Reserve 
Capacity
ControlQdeadband

Typical = +/- 12.5 Mvar

Manual
Disable

Q reserve capacity offset
48 Mvar (High)
24 Mvar (Medium)
0 Mvar (Low)

Auto
Disable

Auto
Disable

Connect/Disconnect  
Signals To Local 

and Remote 
Capacitor Banks

(7 total plus 2 future)

Capacitor 
Bank 

Selection

Capacitor Bank Status
Capacitor Bank Availability

Remote Capacitor Bank Bus Voltage
(7 total plus 2 future)

Capacitor Bank Status
Capacitor Bank Availability

Remote Capacitor Bank Bus Voltage
(7 total plus 2 future)

Connect

Disconnect

 
 

Figure 6.  Functional block diagram of the overall voltage-var control for the VELCO Essex STATCOM. 
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Figure 8.  Capacitor bank status panel of the VELCO Essex STATCOM controller. 
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There are provisions for control of four capacitor banks 
currently at Essex (two of which are associated with the 
STATCOM installation) plus two future banks at Essex, plus 
for the three remote banks.  The information transmitted 
from the local and remote capacitor bank substations into the 
selection logic of the STATCOM secondary control, 
illustrated in Figure 6, is as follows: 
 

• Capacitor bank status 
• Capacitor bank availability 
• Remote capacitor bank bus voltage 

 
To avoid frequent switching of the capacitor banks for the 
fast voltage control, the capacitor bank selection logic has 
voltage deadbands, settable by VELCO on the STATCOM 
control panels, as illustrated in Figure 7. 
 

5.  THE SDG&E TALEGA STATCOM 
 
Description of the STATCOM System 
The STATCOM currently being installed in the SDG&E 
system at the Talega 138 kV substation is being applied for 
dynamic var control during peak load conditions, which 
have rendered the existing system increasingly vulnerable to 
system events on the transmission system.   
 
As shown in Figure 9, the STATCOM system has a rated 
capacity of +/- 100 MVA.  The STATCOM system consists 
of two groups of voltage-sourced converters (50 MVA 
each).  Each 50 MVA converter group consists of four sets 
of 12.5 MVA modules plus a 5 Mvar harmonic filter (plus 
one spare filter switchable to either group), with a nominal 
phase-to-phase ac voltage of 3.2 kV and a DC link voltage 
of 6,000 V.  The two 50 MVA STATCOM groups are 
connected to the 138 kV system via three three-phase 
inverter transformers each rated at 55 MVA, 3.2 kV/138 kV 
(includes one “hot” spare).  Either 50 MVA STATCOM 
group or both can be connected to each of the 138 kV buses 
via the various automatically controlled motor operated 
disconnects.  This STATCOM is scheduled by SDG&E to 
be in-service in September 2002. 
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Figure 9. SDG&E Talega STATCOM one-line diagram 
(CB=circuit breaker, D/S=disconnect switch). 

As part of the overall reactive compensation scheme at the 
Talega substation, there are also three 69 Mvar shunt 
capacitors that are connected to the Talega 230 kV system.    
Figure 10 shows a one-line diagram of the SDG&E 230/138 
kV system in the vicinity of the Talega STATCOM 
installation.   
 
The secondary control functions are illustrated in Figure 11 
and described in the following subsections.  
 
Fast Voltage Control 
The fast voltage control of the Talega STATCOM is similar 
to that of the VELCO STATCOM.  As illustrated in Figure 
11, the secondary control function for fast voltage control 
monitors the Talega 138 kV bus voltage and if the voltage is 
outside a settable deadband for a specified time, then a 
connect (for low voltage conditions) or disconnect (for high 
voltage conditions) signal is given.   
 
As noted for the VELCO STATCOM, since the monitored 
voltage is at the Talega substation, to which the STATCOM 
is connected, this fast voltage control is primarily for severe 
system conditions when the STATCOM is pushed to its 
limits.  Thus an action of capacitor bank switching can move 
the STATCOM back into its controllable range.  There is an 
added function to the SDG&E fast voltage control that will 
call for the connection of all available capacitor banks at the 
Talega 230 kV bus simultaneously for a rapid severe voltage 
drop.  
 
Figure 12 is a time-chart illustrating the SDG&E Talega 
STATCOM fast voltage control logic.   
 
Reserve Capacity Control 
The reserve capacity control of the SDG&E Talega 
STATCOM has the function of keeping the output of the 
STATCOM to a minimum value, so as to minimize losses.   
If the reactive power output of the STATCOM is outside a 
settable deadband for a specified time, then a connect (for 
large capacitive Mvar output) or disconnect (for large 
inductive Mvar output) signal is given by the control.  The 
deadband is rather large due to the fact that the capacitor 
banks being switched are rated at 69 Mvar. 
 
Figure 13 is a time-chart illustrating the SDG&E Talega 
STATCOM reserve capacity control logic.   
 
Capacitor Bank Selection 
The capacitor banks selection logic will select one of the 
three capacitors at the Talega 230 kV substation (69 Mvar 
each) according to the status and availability/failure 
information.  The selection logic includes cycling of the 
three banks.  
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Figure 10.  One-line diagram of the SDG&E 138 and 230 kV system in the vicinity of the Talega STATCOM.  The highlighted 
capacitor banks are coordinated with the STATCOM for fast voltage control and reserve capacity control. 
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Figure 11.  Functional block diagram of the secondary control for the SDG&E Talega  STATCOM. 
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Figure 12.   Illustration of the logic for the SDG&E Talega STATCOM fast voltage control (Note:  Timers, delays, and 
thresholds are settable by SDG&E on the STATCOM controller panels). 
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Figure 13.   Illustration of the logic for the SDG&E Talega STATCOM reserve capacity control (Note: Timers, delays, and 
thresholds are settable by SDG&E on the STATCOM controller panels). 
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6.  SUMMARY 
 
This paper presented the concept and applications of 
secondary voltage-var controls applied to Static 
Compensators (STATCOMs) for fast voltage control and 
long term var management.  The primary purpose of the 
secondary controls is to ensure that an adequate range of 
the STATCOM dynamic capability is available for major 
system disturbances.  The output of the secondary 
controls presented here call for the switching of capacitor 
banks to “reset” the reactive power output of the 
STATCOM to a pre-specified level after a system event 
(long term), or during the course of a daily load cycle 
(long term), or for voltage control (fast).  Two recent 
applications of STATCOMs coordinated with local and 
remote capacitor banks for the purpose of fast voltage 
control and long term var management were presented, 
namely the Vermont Electric +/- 75 MVA STATCOM at 
the Essex 115 kV substation, and the San Diego Gas & 
Electric +/- 100 MVA STATCOM at the Talega 138 kV 
substation. 
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